• Lab News
  • Courses
  • Affiliations

google-scholar  linked-in

Grunlan Research Group

Advancing Medicine through Innovative Biomaterials

  • Research
  • People
  • Publications
  • Equipment
  • Join the Lab
  • Contact

Repair of Bone Defects with Shape Memory Polymers

The Right Fit, the Best Healing

Cranio-maxillofacial (CMF) defects (as well as other types bone defects) can result from traumatic injury, infection, tumor removal or congenital bone disease. The current gold standard to treat CMF bone defects is with autografts, but these suffer from limited availability, complex harvesting procedures as well as donor site morbidity and pain. A particular difficulty is shaping and fixing the rigid autograft tightly into the defect so as to prevent resorption. Tissue engineering represents a promising alternative to heal CMF bone defects.

What we are doing

A foam that shapes to fit into defects of any shape offers the potential for improved repair of bone defects. For this, “self-fitting” scaffolds based on inorganic-organic shape memory polymer (SMP) foams are being researched.

Publications on this research

Hydrolytic degradation of PCL-PLLA semi-IPNs exhibiting rapid, tunable degradation

Woodard, L.N.; Grunlan, M.A. “Hydrolytic degradation of PCL-PLLA semi-IPNs exhibiting rapid, tunable degradation,” ACS Biomater. Sci. Eng., 2019, 5, 498-508.

View the Article

Hydrolytic degradation and erosion of polyester biomaterials

Woodard, L.N.; Grunlan, M.A.; “Hydrolytic degradation and erosion of polyester biomaterials,” ACS Macro Lett., 2018, 7, 976-982.

View the Article

Porous poly(caprolactone)-poly(L-lactic acid) semi-interpenetrating networks as superior, defect-specific scaffolds with potential for cranial bone defect repair

Woodard, L.N.; Kmetz, K.T.; Roth, A.A.; Page, V.M.; Grunlan, M.A. “Porous poly(caprolactone)-poly(L-lactic acid) semi-interpenetrating networks as superior, defect-specific scaffolds with potential for cranial bone defect repair,” Biomacromolecules, 2017, 18, 4075-4083.

View the Article

PCL-PLLA semi-IPN shape memory polymers (SMPs): Degradation and mechanical properties

Woodard, L.N.; Page, V.M.; Kmetz, K.T.; Grunlan, M.A.. “PCL-PLLA semi-IPN shape memory polymers (SMPs): Degradation and mechanical properties,” Macromol. Rapid Comm., 2016, 37, 1972-1977.

View the Article

valuation of the osteoinductive capacity of polydopamine-coated poly(ε-caprolactone) diacrylate shape memory foams

Erndt-Marino, J.D.; Munoz-Pinto, D.J.; Samavedi, S.; Jimenez-Vergara, A.C.; Woodard, L.; Zhang, D.; Grunlan, M.A..; Hahn, M.S. “Evaluation of the osteoinductive capacity of polydopamine-coated poly(ε-caprolactone) diacrylate shape memory foams,” ACS Biomat. Sci. Eng., 2015, 1, 1220-1230.

View the Article

Fabrication of a bioactive, PCL-based ‘self-fitting’ shape memory polymer scaffold

Nail, L.N.; Zhang, D.; Reinhardt, J.; Grunlan, M.A.. “Fabrication of a bioactive, PCL-based ‘self-fitting’ shape memory polymer scaffold,” J. of Visualized Experiments (JOVE), 2015, 104, e52981.

View the Article

A bioactive “self-fitting” shape memory polymer (SMP) scaffold with potential to treat cranio- maxillofacial (CMF) bone defects

Zhang, D.; George, O.J.; Petersen, K.M.; Jimenez-Vergara, A.C.; Hahn, M.S. Grunlan, M.A. “A bioactive “self-fitting” shape memory polymer (SMP) scaffold with potential to treat cranio-
maxillofacial (CMF) bone defects,” Acta Biomaterialia, 2014, 10, 4597-4605.

View the Article

PDMS-PCL shape memory polymer (SMP) foams

Zhang, D.; Petersen, K.M.; Grunlan, M.A. “PDMS-PCL shape memory polymer (SMP) foams,” ACS Appl. Mater. & Interfaces. 2012, 5, 186-191.

View the Article

Porous inorganic-organic shape memory polymers

Zhang, D.; Burkes, W.L.; Schoener, C.A.; Grunlan, M.A. “Porous inorganic-organic shape memory polymers,” Polymer 2012, 53, 2935-2941.

View the Article

Polycaprolactone-based shape memory polymers with variable polydimethylsiloxane soft segments

Zhang, D.; Giese, M.L.; Prukop, S.L.; Grunlan, M.A. “Polycaprolactone-based shape memory polymers with variable polydimethylsiloxane soft segments,” J. Polym. Sci., Part A: Polym. Chem., 2010, 49, 754-761.

View the Article

Shape memory polymers with silicon-containing segments

Schoener, C.A.; Weyand, C.B.; Murthy, R.M.; Grunlan, M.A. “Shape memory polymers with silicon-containing segments,” J. Mater. Chem. 2010, 20, 1787-1793.

View the Article

Oops! We could not locate your form.