• Lab News
  • Courses
  • Affiliations

google-scholar  linked-in

Grunlan Research Group

Advancing Medicine through Innovative Biomaterials

  • Research
  • People
  • Publications
  • Equipment
  • Join the Lab
  • Contact

Anti-fouling Coatings for Blood-contacting Medical Devices

Preventing clotting and infection on device surfaces

A variety of medical devices are made from silicones and polyurethanes, but these rapidly adsorb proteins, and cells, often leading to clotting and infection.

What we are doing

Our research is directed at developing coating technologies to prevent protein adsorption and subsequent negative events on medical devices, including reducing clotting and infection,  as well as enabling pumpless flow of blood in microfluidic point-of-care devices. Towards this goal, we have developed “PEO-silane amphiphiles” as surface modifying additives (SMAs) for silicones and polyurethane devices.

Publications on this research

A thin whole blood smear prepared via a pumpless microfluidic

Dogbevi, K.S.; Ngo, B.K.D.; Branan, K.L.; Gibbens, A.M.; Grunlan, M.A.; Coté, G.L. “A thin whole blood smear prepared via a pumpless microfluidic,” Microfluid. Nanofluid., 2021, 25, 59.

View the Article

Brightfield and fluorescence in-channel staining of thin blood smears generated in pumpless microfluidic

Dogbevi, K.S.; Ngo, B.K.D.; Branan, K.L.; Gibbens, A.M.; Grunlan, M.A.; Coté, G.L. “Brightfield and fluorescence in-channel staining of thin blood smears generated in pumpless microfluidic,” Anal. Methods, 2021, 13, 2238-2247.

View the Article

Amphiphilic, thixotropic additives for extrusion-based 3D printing of silica-reinforced silicone

Suriboot, J.; Marmo, A.C.; Ngo, B.K.D.; Nigam, A.; Ortiz-Acosta, D.; Tai, B.L.; Grunlan, M.A. “Amphiphilic, thixotropic additives for extrusion-based 3D printing of silica-reinforced silicone,” Soft Matter, 2021, 17, 4133-4142.

View the Article

Amphiphilic silicones to reduce the absorption of small hydrophobic molecules

Quiñones-Pérez, M.; Cieza, R.; Ngo, B.K.D.*; Grunlan, M.A.; Domenech, M. “Amphiphilic silicones to reduce the absorption of small hydrophobic molecules,” Acta Biomaterialia, 2021, 121, 339-348.

View the Article

Thromboresistance of polyurethanes modified with PEO-silane amphiphiles

Ngo, B.K.D.; Lim, K.K.; Johnson, J.C.; Jain, A.; Grunlan, M.A. “Thromboresistance of polyurethanes modified with PEO-silane amphiphiles,” Macromol. Biosci. 2020, 2000193.

View the Article

Pumpless, ‘self-driven’ microfluidic channels with controlled blood flow using an amphiphilic silicone

Dogbevi, K.S.; Ngo, B.K.D.; Blake, C.W.; Grunlan, M.A.; Coté, G.L. “Pumpless, ‘self-driven’ microfluidic channels with controlled blood flow using an amphiphilic silicone,” ACS Appl. Polymer. Mater. 2020, 2, 1731-1738.

View the Article

Thromboresistance of silicones modified with PEO-silane amphiphiles

Ngo, B.K.D.; Barry, M.E.; Lim, K.K.; Johnson, J.C.; Luna, D.J.; Pandian, N.K.R.; Jain, A.; Grunlan, M.A. “Thromboresistance of silicones modified with PEO-silane amphiphiles,” ACS Biomater. Sci. Eng., 2020, 6, 2029-2037.

View the Article

Stability of silicones modified with PEO-silane amphiphiles: Impact of structure and concentration

Ngo, B.K.D.; Lim, K.K.; Stafslien, S.J.; Grunlan, M.A. “Stability of silicones modified with PEO-silane amphiphiles: Impact of structure and concentration,” Polym. Degrad. Stab., 2019, 163, 136-142.

View the Article

Protein resistant polymeric biomaterials

Ngo, B.K.D.; Grunlan, M.A. “Protein resistant polymeric biomaterials,” ACS Macro Lett., 2017, 6, 992-1000.

View the Article

Anti-protein and anti-bacterial behavior of amphiphilic silicones

Hawkins, M.L.; Schott, S.S.; Grigoryan, B.; Rufin, M.A.; Ngo, B.K.D.; Vanderwal, L.; Stafslien, S.J.; Grunlan, M.A. “Anti-protein and anti-bacterial behavior of amphiphilic silicones,” Polym. Chem., 2017, 8, 5239-5251.

View the Article

Antifouling silicones based on surface-modifying additive (SMA) amphiphiles

Rufin, M.A.; Ngo, B.K.D.; Barry, M.E.; Page, V.M.; Hawkins, M.L.; Stafslien, S.J.; Grunlan, M.A.. “Antifouling silicones based on surface-modifying additive (SMA) amphiphiles,” Green Mater., 2017, 5, 4-13.

View the Article

Protein resistance efficacy of PEO-silane amphiphiles: Dependence on PEO-segment length and concentration in silicone

Rufin, M.A.; Barry, M.A.; Adair, P.A.; Hawkins, M.L.; Raymond, J.E.; Grunlan, M.A.. “Protein resistance efficacy of PEO-silane amphiphiles: Dependence on PEO-segment length and concentration in silicone,” Acta Biomaterialia, 2016, 41, 247-252.

View the Article

Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length

Rufin, M.A.; Gruetzner, J.A.; Hurley, M.J.; Hawkins, M.L.; Raymond, E.S.; Raymond, J.E.; Grunlan, M.A. "Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length," J. Mater. Chem. B. 2015, 3, 2816-2825.

View the Article

Direct observation of the nanocomplex reorganization of antifouling silicones containing a highly mobile PEO-silane amphiphile

Hawkins, M.L.; Rufin, M.A.; Raymond, J.E.; Grunlan, M.A. “Direct observation of the nanocomplex reorganization of antifouling silicones containing a highly mobile PEO-silane amphiphile,” J. Mater. Chem. Part B, 2014, 2, 5689-5697.

View the Article

Protein resistance of silicones prepared with a PEO-silane amphiphile

Hawkins, M.L.; Grunlan, M.A. “Protein resistance of silicones prepared with a PEO-silane amphiphile,” J. Mater. Chem. 2012, 22, 19540-19546.

View the Article

Amphiphilic silicones prepared with branched PEO-silanes with siloxane tethers

Murthy, R.; Bailey, B.M.; Valentin-Rodriguez, C.; Ivanisevic, A.; Grunlan, M.A. “Amphiphilic silicones prepared with branched PEO-silanes with siloxane tethers,” J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 4108-4119.

View the Article

The influence of poly(ethylene oxide) grafting via siloxane tethers on protein adsorption

Murthy, R.; Shell, C.E.; Grunlan, M.A. “The influence of poly(ethylene oxide) grafting via siloxane tethers on protein adsorption,” Biomaterials 2009, 30, 2433-2439.

View the Article

Protein-resistant silicones: Incorporation of poly(ethylene oxide) via siloxane tethers

Murthy, R.; Cox, C.D.; Hahn, M.S.; Grunlan, M.A. “Protein-resistant silicones: Incorporation of poly(ethylene oxide) via siloxane tethers,” Biomacromolecules, 2007, 8, 3244-3252.

View the Article

Oops! We could not locate your form.