Preventing clotting and infection on device surfaces
A variety of medical devices are made from silicones and polyurethanes, but these rapidly adsorb proteins, and cells, often leading to clotting and infection.

What we are doing
Our research is directed at developing coating technologies to prevent protein adsorption and subsequent negative events on medical devices, including reducing clotting and infection, as well as enabling pumpless flow of blood in microfluidic point-of-care devices. Towards this goal, we have developed “PEO-silane amphiphiles” as surface modifying additives (SMAs) for silicones and polyurethane devices.
Publications on this research
A thin whole blood smear prepared via a pumpless microfluidic
Dogbevi, K.S.; Ngo, B.K.D.; Branan, K.L.; Gibbens, A.M.; Grunlan, M.A.; Coté, G.L. “A thin whole blood smear prepared via a pumpless microfluidic,” Microfluid. Nanofluid., 2021, 25, 59.
View the ArticleBrightfield and fluorescence in-channel staining of thin blood smears generated in pumpless microfluidic
Dogbevi, K.S.; Ngo, B.K.D.; Branan, K.L.; Gibbens, A.M.; Grunlan, M.A.; Coté, G.L. “Brightfield and fluorescence in-channel staining of thin blood smears generated in pumpless microfluidic,” Anal. Methods, 2021, 13, 2238-2247.
View the ArticleAmphiphilic, thixotropic additives for extrusion-based 3D printing of silica-reinforced silicone
Suriboot, J.; Marmo, A.C.; Ngo, B.K.D.; Nigam, A.; Ortiz-Acosta, D.; Tai, B.L.; Grunlan, M.A. “Amphiphilic, thixotropic additives for extrusion-based 3D printing of silica-reinforced silicone,” Soft Matter, 2021, 17, 4133-4142.
View the ArticleAmphiphilic silicones to reduce the absorption of small hydrophobic molecules
Quiñones-Pérez, M.; Cieza, R.; Ngo, B.K.D.*; Grunlan, M.A.; Domenech, M. “Amphiphilic silicones to reduce the absorption of small hydrophobic molecules,” Acta Biomaterialia, 2021, 121, 339-348.
View the ArticleThromboresistance of polyurethanes modified with PEO-silane amphiphiles
Ngo, B.K.D.; Lim, K.K.; Johnson, J.C.; Jain, A.; Grunlan, M.A. “Thromboresistance of polyurethanes modified with PEO-silane amphiphiles,” Macromol. Biosci. 2020, 2000193.
View the ArticlePumpless, ‘self-driven’ microfluidic channels with controlled blood flow using an amphiphilic silicone
Dogbevi, K.S.; Ngo, B.K.D.; Blake, C.W.; Grunlan, M.A.; Coté, G.L. “Pumpless, ‘self-driven’ microfluidic channels with controlled blood flow using an amphiphilic silicone,” ACS Appl. Polymer. Mater. 2020, 2, 1731-1738.
View the ArticleThromboresistance of silicones modified with PEO-silane amphiphiles
Ngo, B.K.D.; Barry, M.E.; Lim, K.K.; Johnson, J.C.; Luna, D.J.; Pandian, N.K.R.; Jain, A.; Grunlan, M.A. “Thromboresistance of silicones modified with PEO-silane amphiphiles,” ACS Biomater. Sci. Eng., 2020, 6, 2029-2037.
Stability of silicones modified with PEO-silane amphiphiles: Impact of structure and concentration
Ngo, B.K.D.; Lim, K.K.; Stafslien, S.J.; Grunlan, M.A. “Stability of silicones modified with PEO-silane amphiphiles: Impact of structure and concentration,” Polym. Degrad. Stab., 2019, 163, 136-142.
View the ArticleProtein resistant polymeric biomaterials
Ngo, B.K.D.; Grunlan, M.A. “Protein resistant polymeric biomaterials,” ACS Macro Lett., 2017, 6, 992-1000.
View the ArticleAnti-protein and anti-bacterial behavior of amphiphilic silicones
Hawkins, M.L.; Schott, S.S.; Grigoryan, B.; Rufin, M.A.; Ngo, B.K.D.; Vanderwal, L.; Stafslien, S.J.; Grunlan, M.A. “Anti-protein and anti-bacterial behavior of amphiphilic silicones,” Polym. Chem., 2017, 8, 5239-5251.
View the ArticleAntifouling silicones based on surface-modifying additive (SMA) amphiphiles
Rufin, M.A.; Ngo, B.K.D.; Barry, M.E.; Page, V.M.; Hawkins, M.L.; Stafslien, S.J.; Grunlan, M.A.. “Antifouling silicones based on surface-modifying additive (SMA) amphiphiles,” Green Mater., 2017, 5, 4-13.
View the ArticleProtein resistance efficacy of PEO-silane amphiphiles: Dependence on PEO-segment length and concentration in silicone
Rufin, M.A.; Barry, M.A.; Adair, P.A.; Hawkins, M.L.; Raymond, J.E.; Grunlan, M.A.. “Protein resistance efficacy of PEO-silane amphiphiles: Dependence on PEO-segment length and concentration in silicone,” Acta Biomaterialia, 2016, 41, 247-252.
Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length
Rufin, M.A.; Gruetzner, J.A.; Hurley, M.J.; Hawkins, M.L.; Raymond, E.S.; Raymond, J.E.; Grunlan, M.A. "Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length," J. Mater. Chem. B. 2015, 3, 2816-2825.
View the ArticleDirect observation of the nanocomplex reorganization of antifouling silicones containing a highly mobile PEO-silane amphiphile
Hawkins, M.L.; Rufin, M.A.; Raymond, J.E.; Grunlan, M.A. “Direct observation of the nanocomplex reorganization of antifouling silicones containing a highly mobile PEO-silane amphiphile,” J. Mater. Chem. Part B, 2014, 2, 5689-5697.
View the ArticleProtein resistance of silicones prepared with a PEO-silane amphiphile
Hawkins, M.L.; Grunlan, M.A. “Protein resistance of silicones prepared with a PEO-silane amphiphile,” J. Mater. Chem. 2012, 22, 19540-19546.
View the ArticleAmphiphilic silicones prepared with branched PEO-silanes with siloxane tethers
Murthy, R.; Bailey, B.M.; Valentin-Rodriguez, C.; Ivanisevic, A.; Grunlan, M.A. “Amphiphilic silicones prepared with branched PEO-silanes with siloxane tethers,” J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 4108-4119.
View the ArticleThe influence of poly(ethylene oxide) grafting via siloxane tethers on protein adsorption
Murthy, R.; Shell, C.E.; Grunlan, M.A. “The influence of poly(ethylene oxide) grafting via siloxane tethers on protein adsorption,” Biomaterials 2009, 30, 2433-2439.
View the ArticleProtein-resistant silicones: Incorporation of poly(ethylene oxide) via siloxane tethers
Murthy, R.; Cox, C.D.; Hahn, M.S.; Grunlan, M.A. “Protein-resistant silicones: Incorporation of poly(ethylene oxide) via siloxane tethers,” Biomacromolecules, 2007, 8, 3244-3252.
View the ArticleOops! We could not locate your form.