• Lab News
  • Courses
  • Affiliations

google-scholar  linked-in

Grunlan Research Group

Advancing Medicine through Innovative Biomaterials

  • Research
  • People
  • Publications
  • Equipment
  • Join the Lab
  • Contact

Publications

Connect with Dr. Grunlan on Google Scholar »

A self-cleaning, mechanically robust membrane for minimizing the foreign body reaction: towards extending the lifetime of sub-Q glucose biosensors

Means, A.K.; Dong, P.; Clubb, Jr, F.J.; Friedemann, M.C.; Colvin, L.E.; Shrode, C.A.; Coté, G.L; Grunlan, M.A. “A self-cleaning, mechanically robust membrane for minimizing the foreign body reaction: towards extending the lifetime of sub-Q glucose biosensors,” J. Mater. Sci. Mater. Med. 2019, 30, 79.

View the Article

Modern strategies to achieve tissue-mimetic, mechanically robust hydrogels

Means, A.K.; Grunlan, M.A. “Modern strategies to achieve tissue-mimetic, mechanically robust hydrogels,” ACS Macro Lett., 2019, 8, 705-713.

View the Article

Double network hydrogels that mimic the modulus, strength and lubricity of cartilage

Means, A.K.; Shrode, C.A.; Whitney, L.V.; Ehrhardt, D.A.; Grunlan, M.A. “Double network hydrogels that mimic the modulus, strength and lubricity of cartilage,” Biomacromolecules, 2019, 20, 2034-2042.

View the Article

Investigating the effect of an antifouling surface modification on the environmental impact of pasteurization process: An LCA study

Zouaghi, S.; Frémiot, J.; André, C.; Grunlan, M.A.; Gruescu, C.; Delaplace, G.; Duquesne, S.; Jimenez, M. “Investigating the effect of an antifouling surface modification on the environmental impact of pasteurization process: An LCA study,” ACS Sustainable Chem. Eng., 2019, 7, 9133-9142.

View the Article

Stability of silicones modified with PEO-silane amphiphiles: Impact of structure and concentration

Ngo, B.K.D.; Lim, K.K.; Stafslien, S.J.; Grunlan, M.A. “Stability of silicones modified with PEO-silane amphiphiles: Impact of structure and concentration,” Polym. Degrad. Stab., 2019, 163, 136-142.

View the Article

Hydrolytic degradation of PCL-PLLA semi-IPNs exhibiting rapid, tunable degradation

Woodard, L.N.; Grunlan, M.A. “Hydrolytic degradation of PCL-PLLA semi-IPNs exhibiting rapid, tunable degradation,” ACS Biomater. Sci. Eng., 2019, 5, 498-508.

View the Article

Toward zonally-tailored scaffolds for osteochondral differentiation of synovial mesenchymal stem cells

Diaz-Rodriguez, P.; Erndt-Marino, J.; Munoz-Pinto, D.J.; Samavedi, S.; Beardon, R.; Grunlan, M.A.; Saunders, W.; Hahn, M.S. “Toward zonally-tailored scaffolds for osteochondral differentiation of synovial mesenchymal stem cells,” J. Biomed. Mater. Res. Part B: Appl. Biomat., 2019, 107B, 2019-2029.

View the Article

A layer-by-layer (LbL) approach to retain an optical glucose sensing assay within the cavity of a hydrogel membrane

Locke, A.K.; Means, A.K.; Dong, P.; Nichols, T.J.; Coté, G.L.; Grunlan, M.A. “A layer-by-layer (LbL) approach to retain an optical glucose sensing assay within the cavity of a hydrogel membrane,” ACS Applied Bio Mater., 2018, 1, 1319-1327.

View the Article

Foreign body reaction to a subcutaneously implanted self-cleaning, thermoresponsive hydrogel membrane for implanted glucose biosensors

Abraham, A.A.; Means, A.K.; Clubb, Jr, F.J.; Fei, R.; Locke, A.K.; Gacasan, E.G.; Coté, G.L; Grunlan, M.A. “Foreign body reaction to a subcutaneously implanted self-cleaning, thermoresponsive hydrogel membrane for implanted glucose biosensors,” ACS Biomater. Sci. Eng., 2018, 4, 4104-4111.

View the Article

Antifouling amphiphilic silicone coatings for dairy fouling mitigation on stainless steel

Zouaghi, S.; Barry, M.E.; Bellayer, S.; Lyskawa, J.; André, C.; Delaplace, G.; Grunlan, M.A.; Jimenez, M. “Antifouling amphiphilic silicone coatings for dairy fouling mitigation on stainless steel,” Biofouling, 2018, 34, 769-783.

View the Article

Hydrolytic degradation and erosion of polyester biomaterials

Woodard, L.N.; Grunlan, M.A.; “Hydrolytic degradation and erosion of polyester biomaterials,” ACS Macro Lett., 2018, 7, 976-982.

View the Article

A canine in vitro model for evaluation of marrow-derived mesenchymal stromal cell-based bone scaffolds

Gharat, T.P.; Diaz-Rodriguez, P.; Erndt-Marino, J.D.; Jimenez Vergara, A.C.; Munoz Pinto, D.J.; Beardon, R.N.; Huggins, S.S.; Grunlan, M.; Saunders, W.B.; Hahn, M.S. “A canine in vitro model for evaluation of marrow-derived mesenchymal stromal cell-based bone scaffolds,” J. Biomed. Mater. Res. Part A, 2018, 106, 2382-2393.

View the Article

Porous poly(caprolactone)-poly(L-lactic acid) semi-interpenetrating networks as superior, defect-specific scaffolds with potential for cranial bone defect repair

Woodard, L.N.; Kmetz, K.T.; Roth, A.A.; Page, V.M.; Grunlan, M.A. “Porous poly(-caprolactone)-poly(L-lactic acid) semi-interpenetrating networks as superior, defect-specific scaffolds with potential for cranial bone defect repair,” Biomacromolecules, 2017, 18, 4075-4083.

View the Article

Thermoresponsive double network hydrogels with exceptional mechanical properties

Means, A.K.; Ehrhardt, D.A.; Whitney, L.V.; Grunlan, M.A. “Thermoresponsive double network hydrogels with exceptional mechanical properties,” Macromol. Rapid Comm., 2017, 38, 1700351-1700357.

View the Article

Protein resistant polymeric biomaterials

Ngo, B.K.D.; Grunlan, M.A. “Protein resistant polymeric biomaterials,” ACS Macro Lett., 2017, 6, 992-1000.

View the Article

Anti-protein and anti-bacterial behavior of amphiphilic silicones

Hawkins, M.L.; Schott, S.S.; Grigoryan, B.; Rufin, M.A.; Ngo, B.K.D.; Vanderwal, L.; Stafslien, S.J.; Grunlan, M.A. “Anti-protein and anti-bacterial behavior of amphiphilic silicones,” Polym. Chem., 2017, 8, 5239-5251.

View the Article

Templated, macroporous PEG-DA hydrogels as tissue engineering scaffolds

Gacasan, E.G; Sehnert, R.M.; Ehrhardt, D.A.; Grunlan, M.A.. “Templated, macroporous PEG-DA hydrogels as tissue engineering scaffolds,” Macromol. Mater. Eng., 2017, 302, 16000512.

View the Article

Antifouling silicones based on surface-modifying additive amphiphiles

Rufin, M.A.; Ngo, B.K.D.; Barry, M.E.; Page, V.M.; Hawkins, M.L.; Stafslien, S.J.; Grunlan, M.A.. “Anti-fouling silicones based on surface-modifying additive (SMA) amphiphiles,” Green Mater., 2017, 5, 1-10.

View the Article

PCL-PLLA semi-IPN shape memory polymers (SMPs): Degradation and mechanical properties

Woodard, L.N.; Page, V.M.; Kmetz, K.T.; Grunlan, M.A.. “PCL-PLLA semi-IPN shape memory polymers (SMPs): Degradation and mechanical properties,” Macromol. Rapid Comm., 2016, 37, 1972-1977.

View the Article

Protein resistance efficacy of PEO-silane amphiphiles: Dependence on PEO-segment length and concentration in silicone

Rufin, M.A.; Barry, M.A.; Adair, P.A.; Hawkins, M.L.; Raymond, J.E.; Grunlan, M.A.. “Protein resistance efficacy of PEO-silane amphiphiles: Dependence on PEO-segment length and concentration in silicone,” Acta Biomaterialia, 2016, 41, 247-252.

View the Article

Self-cleaning, thermoresponsive P(NIPAAm-co-AMPS) double network membranes for implanted glucose biosensors

Fei, R., Means, A.K., Abraham, A.A.; Locked, A.K.; Coté; G.L.; Grunlan, M.A.. “Self-cleaning, thermoresponsive P(NIPAAm-co-AMPS) double network membranes for implanted glucose biosensors,” Macromol. Mater. Eng., 2016, 301, 935-943.

View the Article

Non-toxic, anti-fouling silicones with variable PEO-silane amphiphiles content

Faÿ, F.; Hawkins, M.L.; Réhel, K.; Grunlan, M.A.; Linossier, I. “Non-toxic, anti-fouling silicones with variable PEO-silane amphiphiles content,” Green Mater., 2016, 4, 53-62.

View the Article

Evaluation of the osteoinductive capacity of polydopamine-coated poly(ε-caprolactone) diacrylate shape memory foams

Erndt-Marino, J.D.; Munoz-Pinto, D.J.; Samavedi, S.; Jimenez-Vergara, A.C.; Woodard, L.; Zhang, D.; Grunlan, M.A..; Hahn, M.S. “Evaluation of the osteoinductive capacity of polydopamine-coated poly(ε-caprolactone) diacrylate shape memory foams,” ACS Biomat. Sci. Eng., 2015, 1, 1220-1230.

View the Article

Fabrication of a bioactive, PCL-based ‘self-fitting’ shape memory polymer scaffold

Nail, L.N.; Zhang, D.; Reinhardt, J.; Grunlan, M.A.. “Fabrication of a bioactive, PCL-based ‘self-fitting’ shape memory polymer scaffold,” J. of Visualized Experiments (JOVE), 2015, 104, e52981.

View the Article

Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length

Rufin, M.A.; Gruetzner, J.A.; Hurley, M.J.; Hawkins, M.L.; Raymond, E.S.; Raymond, J.E.; Grunlan, M.A. "Enhancing the protein resistance of silicone via surface-restructuring PEO-silane amphiphiles with variable PEO length," J. Mater. Chem. B. 2015, 3, 2816-2825.

View the Article

Silicone membranes to inhibit water uptake into thermoset polyurethane shape-memory polymer conductive composites

Yu, Y.-J.; Infanger, S.; Grunlan, M.A.; Maitland, D.J. “Silicone membranes to inhibit water uptake into thermoset polyurethane shape-memory polymer conductive composites,” J. Appl. Polym. Sci. 2015, 132, 41226-41234.

View the Article

A bioactive “self-fitting” shape memory polymer (SMP) scaffold with potential to treat cranio- maxillofacial (CMF) bone defects

Zhang, D.; George, O.J.; Petersen, K.M.; Jimenez-Vergara, A.C.; Hahn, M.S. Grunlan, M.A. “A bioactive “self-fitting” shape memory polymer (SMP) scaffold with potential to treat cranio- maxillofacial (CMF) bone defects,” Acta Biomaterialia, 2014, 10, 4597-4605.

View the Article

Thermoresponsive double network micropillared hydrogels for cell release

Fei, R.; Hou, H.; Munoz-Pinto, D.; Han, A.; Hahn, M.S.; Grunlan, M.A. “Thermoresponsive double network micropillared hydrogels for cell release” Macromol. Biosci.; 2014, 14, 1346-1352.

View the Article

Direct observation of the nanocomplex reorganization of antifouling silicones containing a highly mobile PEO-silane amphiphile

Hawkins, M.L.; Rufin, M.A.; Raymond, J.E.; Grunlan, M.A. “Direct observation of the nanocomplex reorganization of antifouling silicones containing a highly mobile PEO-silane amphiphile,” J. Mater. Chem. Part B, 2014, 2, 5689-5697.

View the Article

Bacteria and diatom resistance of silicone modified with PEO-silane amphiphiles

Hawkins, M.L.; Fav, F.; E. Cheverau; Linossier, I.; Grunlan, M.A.“Bacteria and diatom resistance of silicone modified with PEO-silane amphiphiles,” Biofouling, 2014, 30, 247-258.

View the Article

A self-cleaning membrane to extend the lifetime of an implanted glucose biosensor

Abraham, A.A.; Fei, R.; Coté, G.L.; Grunlan, M.A. “A self-cleaning membrane to extend the lifetime of an implanted glucose biosensor,” ACS Appl. Mater. & Interfaces, 2013, 5, 12832-12838.

View the Article

Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue engineering

Bailey, B.M.; Nail, L.N.; Grunlan, M.A. “Continuous gradient scaffolds for rapid screening of cell-material interactions and interfacial tissue engineering,” Acta Biomaterialia, 2013, 9, 8254-8261.

View the Article

Ultra strong thermoresponsive hydrogels

Fei, R.; George, J.T.; Means, A.K.; Grunlan, M.A. “Ultra strong thermoresponsive hydrogels,” Soft Matter. 2013, 9, 2912-2919.

View the Article

PDMS-PCL shape memory polymer (SMP) foams

Zhang, D.; Petersen, K.M.; Grunlan, M.A. “PDMS-PCL shape memory polymer (SMP) foams,” ACS Appl. Mater. & Interfaces. 2012, 5, 186-191.

View the Article

PDMSstar-PEG hydrogels prepared via solvent-induced phase separation (SIPS) and their potential utility as tissue engineering scaffolds

Bailey, B.M.; Fei, R.; Munoz-Pinto, D.; Hahn, M.S.; Grunlan, M.A. “PDMSstar-PEG hydrogels prepared via solvent-induced phase separation (SIPS) and their potential utility as tissue engineering scaffolds,” Acta Biomaterialia, 2012, 8, 4324-4333.

View the Article

An approach for assessing hydrogel hydrophobicity

Munoz-Pinto, D.; Grigoryan, B.; Long, J.; Grunlan, M.A.; Hahn, M.S. “An approach for assessing hydrogel hydrophobicity,” J. Biomed. Mater. Res. Part A, 2012, 100, 2855-2860.

View the Article

Protein resistance of silicones prepared with a PEO-silane amphiphile

Hawkins, M.L.; Grunlan, M.A. “Protein resistance of silicones prepared with a PEO-silane amphiphile,” J. Mater. Chem. 2012, 22, 19540-19546.

View the Article

Osteogenic potential of poly(ethylene glycol)-poly(dimethylsiloxane) hybrid hydrogels

Munoz-Pinto, D.; Jimenez-Vergara, A.; Hou, Y.; Hayenga, H.N., Grunlan, M.A.; Hahn, M.S. “Osteogenic potential of poly(ethylene glycol)-poly(dimethylsiloxane) hybrid hydrogels,” Tissue Eng. Part A 2012, 18, 1710-1719.

View the Article

Porous inorganic-organic shape memory polymers

Zhang, D.; Burkes, W.L.; Schoener, C.A.; Grunlan, M.A. “Porous inorganic-organic shape memory polymers,” Polymer 2012, 53, 2935-2941.

View the Article

Thermoresponsive nanocomposite double network nanocomposite hydrogels

Fei, R.; George, J.T.; Park, J., Grunlan, M.A. “Thermoresponsive nanocomposite double network nanocomposite hydrogels,” Soft Matter 2012, 8, 481-487.

View the Article

Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS)

Bailey, B.M.; Hui, V.; Fei, R., Grunlan, M.A. “Tuning PEG-DA hydrogel properties via solvent-induced phase separation (SIPS),” J. Mater. Chem. 2011, 21, 18776-18782.

View the Article

Thermoresponsive nanocomposite hydrogels with cell-releasing behavior

Hou, Y.; Matthews, A.R.; Smitherman, A.M.; Bulick, A.S.; Hahn, M.S.; Hou, H.; Han, A.; Grunlan, M.A. "Thermoresponsive nanocomposite hydrogels with cell-releasing behavior," Biomaterials 2008, 29, 3175-3184.

View the Article

Polycaprolactone-based shape memory polymers with variable polydimethylsiloxane soft segments

Zhang, D.; Giese, M.L.; Prukop, S.L.; Grunlan, M.A. “Polycaprolactone-based shape memory polymers with variable polydimethylsiloxane soft segments,” J. Polym. Sci., Part A: Polym. Chem., 2011, 49, 754-761.

View the Article

Amphiphilic silicones prepared with branched PEO-silanes with siloxane tethers

Murthy, R.; Bailey, B.M.; Valentin-Rodriguez, C.; Ivanisevic, A.; Grunlan, M.A. “Amphiphilic silicones prepared with branched PEO-silanes with siloxane tethers,” J. Polym. Sci., Part A: Polym. Chem., 2010, 48, 4108-4119.

View the Article

Micropatterning of poly(N-isopropylacrylamide) PNIPAAm hydrogels: Effects of thermosensitivity and cell release behavior

Hou, H.; Hou, Y.; Grunlan, M.A.; Munoz-Pinto, D.J.; Hahn, M.S.; Han, A. “Micropatterning of poly(N-isopropylacrylamide) PNIPAAm hydrogels: Effects of thermosensitivity and cell release behavior,” Sensors and Material, 2010, 22, 109-120.

View the Article

Design of a self-cleaning thermoresponsive nanocomposite hydrogel membrane for implantable biosensors

Gant, R.; Abraham, A.; Hou, Y.; Grunlan, M.A.; Coté, G.L. "Design of a self-cleaning thermoresponsive nanocomposite hydrogel membrane for implantable biosensors," Acta Biomaterialia, 2010, 6, 2903-2910.

View the Article

Inorganic-organic hybrid scaffolds for osteochondral regeneration

Munoz-Pinto, D.J.; McMahon, R.E.; Kanzelberger, M.A.; Jimenez-Vergara, A.C.; Grunlan, M.A.; Hahn, M.S. “Inorganic-organic hybrid scaffolds for osteochondral regeneration,” J. Biomed. Mater. Res. Part A, 2010, 94, 112-121.

View the Article

Photo-crosslinked PEO-PDMSstar hydrogels: Synthesis, characterization, and potential application for tissue engineering scaffolds

Hou, Y.; Schoener, C.A.; Regan, K.R.; Munoz-Pinto, D.; Hahn, M.S.; Grunlan, M.A. "Photo-crosslinked PEO-PDMSstar hydrogels: Synthesis, characterization, and potential application for tissue engineering scaffolds," Biomacromolecules 2010, 11, 648-656.

View the Article

Shape memory polymers with silicon-containing segments

Schoener, C.A.; Weyand, C.B.; Murthy, R.M.; Grunlan, M.A. "Shape memory polymers with silicon-containing segments," J. Mater. Chem. 2010, 20, 1787-1793.

View the Article

A thermoresponsive hydrogel poly(N-isopropylacrylamide) micropatterning method using microfluidics techniques

Hou, H.; Kim, W.; Grunlan, M.; Han, A. “A thermoresponsive hydrogel poly(N-isopropylacrylamide) micropatterning method using microfluidics techniques,” J. Micromech. Microeng. 2009, 19, 127001-127007.

View the Article

Development of a self-cleaning sensor membrane for implantable biosensors

Gant, R.; Hou, Y.; Grunlan, M.A., Coté, G.L. “Development of a self-cleaning sensor membrane for implantable biosensors,” J. Biomed. Mater. Res. 2009, 90A, 695-701.

View the Article

Biomechanical properties of synthetic and biologic graft materials following long-term implantation in the rabbit abdomen and vagina

Pierce, L.M.; Grunlan, M.A.; Hou Y.; Baumann, S.S.; Kuehl, T.J.; Muir, T.W. “Biomechanical properties of synthetic and biologic graft materials following long-term implantation in the rabbit abdomen and vagina,” Am. J. Obstet. Gynecol. 2009, 200, 549.e1-e8.

View the Article

The influence of poly(ethylene oxide) grafting via siloxane tethers on protein adsorption

Murthy, R.; Shell, C.E.; Grunlan, M.A. “The influence of poly(ethylene oxide) grafting via siloxane tethers on protein adsorption” Biomaterials 2009, 30, 2433-2439.

View the Article

Influence of hydrogel mechanical properties and mesh size on vocal fold fibroblast extracellular matrix production

Hahn, M.S.; Liao, H; Munoz-Pinto, D.; Xin, Q.; Hou, Y.; Grunlan, M.A.; “Influence of hydrogel mechanical properties and mesh size on vocal fold fibroblast extracellular matrix production,” Acta Biomaterialia 2008, 4, 1161-1171.

View the Article

Thermoresponsive nanocomposite hydrogels with cell-releasing behavior

Hou, Y.; Matthews, A.R.; Smitherman, A.M.; Bulick, A.S.; Hahn, M.S.; Hou, H.; Han, A.;
Grunlan, M.A. “Thermoresponsive nanocomposite hydrogels with cell-releasing behavior,” Biomaterials 2008, 29, 3175-3184.

View the Article

Protein-resistant silicones: Incorporation of poly(ethylene oxide) via siloxane tethers

Murthy, R.; Cox, C.D.; Hahn, M.S.; Grunlan, M.A. "Protein-resistant silicones: Incorporation of poly(ethylene oxide) via siloxane tethers," Biomacromolecules 2007, 8, 3244-3252.

View the Article